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II. A4 Ninth Memoir on Quantics. By Professor CaYLEY, F.R.S.
Received April 7,—Read May 19, 1870.

I was shown not long ago by Professor GorpAN that the number of the irreducible
covariants of a binary quantic of any order is finite (see his memoir “ Beweis dass jede
Covariante und Invariante einer biniren Form eine ganze Function mit numerischen
Coefficienten einer endlichen Anzahl solcher Formen ist,” Crelle, t. 69 (1869), Memoir
dated 8 June 1868), and in particular that for a binary quintic the number of irreducible
covariants (including the quintic and the invariants)is =23, and that for a binary sextic
the number is =26. From the theory given in my “Second Memoir on Quantics,”
Phil. Trans. 1856, I derived the conclusion, which, as it now appears, was erroneous, that
for a binary quintic the number of irreducible covariants was infinite. The theory
requires, in fact, a modification, by reason that certain linear relations, which I had
assumed to be independent, are really not independent, but, on the contrary, linearly
connected together: the interconnexion in question does not occur in regard to the
quadric, cubic, or quartic; and for these cases respectively the theory is true as it stands;
for the quintic the interconnexion first presents itself in regard to the degree 8 in the
coefficients and order 14 in the variables, viz. the theory gives correctly the number of
covariants of any degree not exceeding 7, and also those of the degree 8 and order less
than 14 ; but for the order 14 the theory as it stands gives a non-existent irreducible
covariant (a, . .)*(#, y)*, viz. we have, according to the theory, 5=(10—6)-+1, that is,
of the form in question there are 10 composite covariants cqﬁheéfed by 6 syzygies, and
therefore equivalent to 10 —6, =4 asyzygetic covariants; but the number of asyzygetic
covariants being =5, there is left, according to the theory, 1 irreducible covariant of the
form in question. The fact is that the 6 syzygies being interconnected and equivalent
to 5 independent syzygies only, the composite covariants are equivalent to 10—5, =5,
the full number of the asyzygetic covariants. And similarly the theory as it stands
gives a non-existent irreducible covariant (@,..)%(2, 7). The theory being thus in error,
by reason that it omits to take.account of the interconnexion of the syzygies, there is no
difficulty in conceiving that the effect is the introduction of an infinite series of non-
existent irreducible covariants, which, when the error is corrected, will disappear, and
there will be left only a finite series of irreducible covariants. :
Although I am not able to make this correction in a general manner so as to show
from the theory that the number of the irreducible covariants is finite, and so to present
the theory in a complete form, it nevertheless appears that the theory can be made to
accord with the facts; and I reproduce the theory, as well to show that this is so as to
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18 PROFESSOR CAYLEY'S NINTH MEMOIR ON QUANTICS.

exhibit certain new formule which appear to me to place the theory in its true light.
I remark that although I have in my Second Memoir considered the question of finding
the number of irreducible covariants of a given degree § in the coefficients but of any
order whatever in the variables, the better course is to separate these according to their
order in the variables, and so consider the question of finding the number of the irre-
ducible covariants of a given degree § in the coefficients, and of a given order w in the
variables. (This is, of course, what has to be done for the enumeration of the irreducible
covariants of a given quantic; and what is done completely for the quadric, the cubic,
and the quartic, and for the quintic up to the degree 6 in my Eighth Memoir, Phil.
Trans. 1867.) The new formule exhibit this separation; thus (Second Memoir, No. 49),

writing @ instead of &, we have for the quadric the expression , showing

1
(1—a)(1—d’)
that we have irreducible covariants of the degrees 1 and 2 respectively, viz. the quadric

.

(1 —az®)(1—a?)
riants in question are of the actual forms (@, . .Y, y)* and (@, . .)* respectively. Simi-
1—a
(1—a)(1—a*)(1—0a’) (1 —a?)

itself and the discriminant: the new expression is , showing that the cova-

, We have

larly for the cubic, instead of the expression No. 55,
1—ab48

(1 —aa®)(1 —a®2?) (1 —a®2%) (1 —a*)

(@, . Xz, 9) (a,. .)(2 9)% (a..)(x, y), and (, . .)*, connected by a syzygy of the form

(@, . .)%=, y)°; and the like for quantics of a higher order.

In the present Ninth Memoir I give the last-mentioned formulee; I carry on the theory
of the quintic, extending the Table No. 82 of the Eighth-Memoir up to the degree 8,
calculating all the syzygies, and thus establishing the interconnexions in virtue of which
it appears that there are really no irreducible covariants of the forms (e, ..)*(z, y)", and
(@, . X, y)*. Ireproduce in part GorpAN’s theory so far as it applies to the quintic,
and I give the expressions of such of the 23 covariants as are not given in my former
memoirs; these last were calculated for me by Mr. W. BARrETT DAvIs, by the aid of a
grant from the Donation Fund at the disposal of the Royal Society. The paragraphs of
the present memoir are numbered consecutively with those of the former memoirs on
Quantics.

, exhibiting the irreducible covariants of the forms

Article Nos. 328 to 332.— Reproduction of my original Theory as to the Number of the
' Irreducible Covariants.

328. I reproduce to some extent the considerations by which, in my Second Memoir
on Quantics, I endeavoured to obtain the number of the irreducible covariants of a
given binary quantic (e, 4, ... Y&, y)"

Considering in the first mstance the covariants as functions of the coefficients (a,0,¢..),
without regarding the variables («, ), and attending only to the following properties—
1°, a covariant is a rational and integral homogeneous function of the coefficients;
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2%, if P, Q, R, ... are covariants, any rational and integral function F(P, Q, R,...),
homogeneous in regard to the coefficients, is also a covariant,—we say that the cova-
riants X, Y, ... of the same degree in regard to the coefficients, and not connected by
any identical equation aX-+4gY...=0 (where «, 38, ... are quantities independent of
coefficients (@, b, ¢, .. .)), are asyzygetic covariants, and that a covariant not expressible
as a rational and integral function of covariants of lower degrees is an irreducible cova.-
riant; and it is assumed that we know the number of the asyzygetic covariants of the
degrees1, 2, 3....; say, these are A}, A,, A, , ..., or, what is the same thing, that the
number of the asyzygetic covariants of the degree 4, or form (e, 4, ...)’, is equal to the
coefficient of @’ in a given function f

o(@)=1+Aa+Ac... +Ad+. ..,

where I have purposely written @, as a representative of the coefficients (@, 8, ¢, ..), in
place of the # of my Second Memoir. v
329, The theory was, that determmmg )y Oy ... by the conditions

A=ua,
A2= Sou(e +1)+ %29
A3=%“1(“1 + 1)(“1 + 2)+ 00,06+ g,

that ié, throwing _ ,
1+Aa+A+Ad’+. .

(1—a) (1—a*)~(1—a®)~*.. .,

the index «, would express the number of irreducible covariants of the degree  less the
number of the (irreducible) linear relations, or syzygies, between the composite or non-
irreducible covariants of the same degree. Thus A, =, there would be «, covariants
of the degree 1*; these give rise to 3e,(z,+1) composite covariants of the degree 2;
or, assuming that these are connected by %, syzygies, the number of asyzygetic com-
posite covariants of the degree 2 would be %a,(«,41)—%,; and thence there would be

—3o,(0,4+ 1)+ £, thatis, ,+7%, irreducible covariants of the same degree; so that
(1rredu01ble invariants less syzygies) (a,4%,)—%, is =a,.

330. The %, syzygies are hereirreducible syzygies; for, calling P, Q, R, ... the covari-
ants of the degree 1, there is no identical relations between the terms P?, Q?, PQ, ...:
imagine for a moment that we could have /, such identical relations (viz. this might very
well be the case if instead of the 4, (¢,+1) functions P2, Q?, PQ,..., we were dealing
with the same number of other quadric functions of these quantities), that is, relations
not establishing any relation between P?, Q?, PQ, ..., and besides these %, non-identical
relations as above; then the number of irreducible invariants would be o,+%,4-7,, and
the number of irreducible syzygies being as before %, the difference would be not e,

‘into the form

* For the case of covariants, a, is of course =1; but in the investigation the term covariant properly stands
for any function satisfying the conditions 1° and 2°,

D 2
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but «,-+7/,. The [, identical relations are here relations between composite covariants,
and the effect (if any such relation could subsist) would, it appears, be to increase e,;
between syzygies such identical relations do actually exist, and the effect is contrariwise
to diminish the «; we may, for instance, for the degree s have irreducible covariants less
[irreducible syzygies =&, —1..

331. Assume for a moment that, for a given value of s, o, is positive; but for the
term 7, it would of course follow that there was for the degree in question a certain
number of irreducible covariants; and it was in this manner that I was led to infer that
the number of the covariants of a quintic was infinite—viz. the transformed expression
for the number of asyzygetic covariants is

=coefl. ¢’ in (1—a*)'(1—a°)"* (1—a"®)~* (1—a")"*...,

a product which does not terminate, and as to which it is also assumed that the series
of negative indices does not, terminate.

332. The prmmple is the same, but the discussion as to the number of the irreducible
covariants becomes more precise, if we attend to the covariants as involving not only the
coefficients (, &, ...) but also the variables (z,9); we have then to consider the covari-
ants of the form (e, b, ...)(x, y)*, or, say, of the form a’s* (degree ¢ and order w), and the
number of the asyzygetic covariants of this form is given as the coefficient of ¢%2* in
a given function of (e, x), (I write @ instead of the #z of my Second Memoir in the
formulee which contain # and z): by taking account of the composite covariants and
syzygies, we successively determine, from the given number of asyzygetic covariants for
each value of 4 and p, the number of the irreducible covariants for the same values of
4 and w. Thisis,in fact, done for the quintic in my Eighth Memoir up to the covariants
and syzygies of the degree 6. But before resuming the discussion for the quintic, I
will consider the preceding cases of the quadric, the cubic, and the quartic.

Article Nos. 333 to 336.—New formule for the number of Asyzygetic Covariants.

833. For the quadric (a, b, ¢z, 7), the number of asyzygetic covariants a*

1—z
_ 0 0—3u 3
= coeff. ®2*~* in (1—a)(1—az)(l —az?)

(see Second Memoir, No. 35, observing that ¢ is there =0—4u, and that the subtraction
of successive coefficients is effected by means of the factor 1—a in the numerator. See
also Eighth Memoir, No. 251, where a like form is used for the quintic). Writing az* for

1 Cye .
a,and — for z, this is
1

1=

= coeff. ¢’z* in — —.
(1—a2®)(1—a) (1 — ;c*?")
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The development is

]. ““xg ]-
1
+ax® +a (g)

4 2 1 |
+a*(2*+1) +a (51+1)
sowre) | +e(bed)

4f 78 | pd 4 1 1
re@+atl) | +a(patl)

which is
1. 71
=A(2)—2A (5)
where
. 1
A==y i—ay
and, since %A (5> contains only negative powers, the required number is
o 0 1
= coefl, ¢’z* in. =ai=a)’
indicating that the covariants are powers and products of (e2* and @?), the quadric itself,
and the discriminant. Compare Second Memoir, No. 49, according to. which, writing
therein « for «, the number of asyzygetic covariants is

1
— o3 .
= coeff. &° in =9 (=a)

334. For the cubic (e, b, ¢, dYx, y)’ the number of asyzygetic covariants a®a* is

l—2z .
—az)(l—a2?)(l —az®)’

= coeff. a’2’~* in T=an

or transforming as before, this is
1
=

= coeff. aox'“ in (1—%8)(1 —am)(l—d‘l‘—l)(l—ax—3) :

the function is here
1 1
A(@)— %A (5)

1—af28

Al)= == 0= (1=

where

(that this is so may be easily verified) ; and since the second term contains only negative
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powers, the required number is =coeff. o’2* in A(z). The formula, in fact, indicates
that the covariants are made up of (aa?, @’2% o°2°, a*), the cubic itself, the Hessian, the
cubicovariant, and the discriminant, these being connected by a syzygy (az°) of the
degree 6 and order 6. Compare Second Memoir, No. §0, according to which the
number of covariants of degree 4 is
0 s 1—af
=coeff. ¢’ in 1= 1—a®)(1—a®)(1—d?)

335. For the quartic (a, &, ¢, d, e, y)* the number of asyzygetic covariants a’z* is

l—z .
1—e)(1—az)(1—a2®) (1 —az®) (1 —az?)’

=coeff. a®2°* in (

or transforming as before, this is

. l—z—2
=coeff. a’a* in (1—a2*) (1 —a2?) (1 —a)(1 —az—2)(1 —az—*) :

the function is here
¢ 1 1
A@—gA(5)

_ 1 — o212 .
Alz)= (L—az®)(1—a%?) (1—a®) (1 —a®)(1 — a®2f)’

and the second term containing only negative powers, the required number is
=coeff. ’2* in A(z). The formula indicates that the covariants are made up of
(azt, a2, &, &, @’2°), the quartic itself, the Hessian, the quadrinvariant, the cubin-
variant, and the cubicovariant, these being connected by a syzygy (a’") of the degree 6
and.order 12. Compare Second Memoir, No. 61, according to Wh1ch the number of
covariants of degree § is

where

1—af
(1—a)(1—a??(1—a®)*

336. For the quintic (a, b, ¢, d, ¢, f X, y)° the number of asyzygetic covariants
a’z* is '

=coeff. ¢’ in

b 1—2 .
=coefl. a2 In T = —a) i~ (=)

or transforming as before, this is

=coeff. 2" In 5 1—a™ — —- —
, T (T—aa®) (1 —a2®) (1 —ax) (1—az~") (1 —az~3) (1 —az~°)

The developed expression is
1 1 1
+aa® | +ax®
+a* (2 425+ a*) +a(a 42"+ a7?)
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but here there is not any finite function A(z) such that this development is
1 1
=A(2) — (5)-

The numerical coefficients are of course the same as those in the development of the
untransformed function; viz. they are the numbers given in the third column of Table
No. 82 (Eighth Memoir), and also (carried further) in the third column of the following
Table, No. 87. And we can, from the discussion of these coefficients, deduce the form of

A(z), viz. this is

l 1—abz! | 1—af%® | 1 —aizh® (1 —a'z?)

14 13 (10)°
12 11 8)?
10 9y (6y
8 7
— . 6
1—ax® ’ 1—a%® | 1—a®2® | 1—a%® | 1—a%2" | 1—af2* | 1—a"2® 1—a®? 1—a' \ ce

2 5 4 3 2 1 0

3 0 1 20

14

where, for shortness, I have written 1—a?2® to stand for (1—a%f)(1—a2?), and so in

other cases: moreover in the third column of the numerator the (9)° shows that the
factor is (1—a/2°)’, and so in other cases: this will be further explained presently.
Compare herewith the form, Second Memoir, No. 52, viz. the number of asyzygetic
covariants of the degree 4 is

= coeff. &’ in (1—a)'(1—a*)}(1—a*)}(1—a')*(1—a*)*(1—0a’)'(1—a )’ (1—2a®)°.. ..
each index being, it will be observed, equal to the number of factors in the numerator,

less the number of factors in the denominator, in the corresponding column of the
new formula. '

Article Nos. 337 to 346.—The 23 Fundamental Covariants.

337. GorDAN’S result is that the entire number of the irreducible covariants of the
binary quintic is =23. T represent these by the letters A, B, C,..., W, identifying such
of them as were given in my former Memoirs on Quantics with the Tables of these
Memoirs, and the new ones, O, P, R, S, T, V, with the Tables Nos. 90, 91, 92, 93, 94, 95
of the present Memoir. '
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Table No. 87.—Identification of the 23 irreducible covariants of the binary quintic.

Teio0(4A, A)*
8~L (A, A)?
—§(Aa B)2
3(A; B)

TL(A’ C)
'—%(B’ B)2
=—1(B, OF +1B°
- —%(B’ C)
—(B, DY
—(B, D)
—35(4A, H)4+1BE
S(B H)2_"

=1(B, H)
—(B,J)
—3+A, M)—BK
(B, M)
_%(B" M)
S =—96(D, M)+16BO—7GK
T =—(J, M)

=75(7, 0)+3GQ
V=—(B,T)
W=—1%(0, T)

i

Il

1§ ll i1l

@*-do'ng'mw'-*mcprﬁtuuow;»

Il

I

(a, b, ¢, d, e, f Xy

e T N e N e e N e N N T T B e N e e N e N e T e e e T e T T

¥ (
Y (
Y (
Y (
¥ (
) (
¥ (
) (
) (
¥ (
)
¥ (
¥ (
¥ (
y(
¥ (
Y
P (
'
¥
¥
)

)2
)6

r

)5
)9
)0
)4
)6
)
)3
)7
)2
)4
)l
)-5
)0
)2
)3
)1
)0
)l
)0

S
s =(ff)
o=(ffr
J=(f
9
(fo)
(10
p=(¢4)
(94)
a=(j4)*
D)
(fp)
r=(psf

()

(1)
(/)
(4)

()

(Jr)
y=(72)
((s2), )
()
((b2), 7)

Table No.
13

14
15
16
17
18
19
20
21
29
23
24
83
84
*90
*91
25
*92
*93
*04
29
*05
294

'3388. The Table exhibits the generation of the several covariants; viz. (A, B) denotes
9,A.9,B—0,A.,B, (A, B)* denotes 9%A . 3:B—23,9,A.9,0,B+0;A . 0B, &e. (see post,
No. 848). The column f; s=(ff)%, &c. shows GORDAN’s notation, and the generation
of his 23 forms ((ff)* written as with him for (£, f)*, &c.): it will be observed that
the forms are not identical; if the calculations had been made de novo, I should have
adopted his values, simply omitting numerical factors of the several forms (thus every

term of s, =(ff)* contains the factor 2.(120):

=28800): of course the presence of

these numerical factors renders the f, 4, ¢, &c. as they stand inconvenient for the
expression of results; and the numerical fixation of the values was no part of GORDAN’S
object. But by reason of the existing Tables the change of notation is in fact more
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than this; thus H instead of being a submultiple of (B, C), that is, of p, is in fact
=—4(B,C)’+2B*; and so in other cases. If the occasion for it arises, there is no
difficulty in expressing any one of the forms f, s, ¢, &c. in terms of the (A, B, C..V, W);
thus in the instance just referred to, p=(g:)*, we have

o=(ff)=(A, A)=800C,
i=(ff)'=(A, A)'=28800B,

whence p=2304000(B, C)*; also (B, C)* =—5H+2B?; and therefore, finally,
p=—11520000 H 4608000 B*.

339. I remark upon the value S=—96(D, M)+16BO—7GK, that S is the complete
value of a covariant ( )’ ( ), the leading coefficient of which is given in Table No. 86 of
my Eighth Memoir; the form (D, M), omitting a numerical factor (if any), would have
had smaller numerical coefficients, but there is in the form actually adopted the advan-
tage that it vanishes for ¢=0, =0, that is, when the quintic has two equal roots.

340. I now form the following Table No. 88, viz. this is the Table No. 82 of my
Eighth Memoir, carried as far as of, but with the composite covariants expressed by
means of the foregoing letters A, B, C, ..., W; instead of giving the syzygies as in
Table No. 82, I transfer them to a separate Table, No. 89. 1In all other respects the
arrangement is as explained, Eighth Memoir, No. 263; but in place of N, S, §' I have
written *, 2, 3/ to denote new covariant, new syzygy, derived syzygy, respectively; and
I have, as to the terms a’z", a®* respectively, introduced the new symbol ¢ to denote
an interconnexion of syzygies, as appearing by the Table No. 89, and as will be further
explained.

and

Table No. 88.

Ind. a.|Ind. 2.| Coeff.
1 5|1 | A *
3| 0
170
2 110 1 | A2
8| 0
6|1 |C *
41 0
2|1 *
0| 0
3 15| 1 | A®
131 0
11 1 | AC
9|1 |F *
711 | AB
5 1 E 3 #*
3|1 |D *
1,0

' MDCCCLXXI. E
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Table No. 88 (continued).

Ind. ¢.|Ind. 2.| Coeff.
4 1201 A’
18 | 0
16 | 1 AZC
14 |11 AF
12 | 2 A’B, C?
10 11 AE
8 2 AD, BC
61 I *
412 | B3 H #
210
01 G %
5 12 | 1 | A®
231 0 .
21 1 A3C
19| 1 | A*F
| 17 | 2 | A'B, AC?
15| 2 | A’E, CF
1131 2 | A’D, ABC
11 2 | Al, BF, CE b
9 3 | AB%, AH, CD
7, 2 | BE, L *
5| 2 | AG, BD
3| 171K *
11 1J | ¥
6 |30 1 | AS
281 0
26 | 1 A'C
24| 1 A’F
22 | 2 | A'B, A(?
20 | 2 | A%E, ACF
18| 3 | A’D, AZBC, C*F° 3
16 | 2 | A’I, ABF, ACE b
14 | 4 | A®B% AZH, ACD, B(? EF b}
121 3 | ABE, AL, CI, DF pA
10 | 4 | A’G, ABD, B%C, CH, E2 b}
8| 2 | AK, BI, DE O
6| 4 | AJ, B, BH, CG, D° 5
4,1 | N *
2 2 | BGGM oo
00
7 1381 | A"
33, 0
131 1 ASC
29 | 1 | AF
27 1 2 | A®B, ACF
25| 2 | A'E, A’CF
23 | 3 | A'D, A’EC, AC?, AT? b
21 | 3 | A’l, A’BF, A’CE, C°F >
19 | 4 | A%B?% A®H, A%CD, ABC?% AEF by
17 | 4 | A*BE, A’L, ACIl, ADF, BCF, C’E P2
15 | 5 | A’G, A’BD, AB*C, ACH, AE3 C?D, FI 3,
13 | 4 | A’K, ABI, ADE, BF, BCE, CL, FH >
11 | 5 | A3J, AB% ABH, ACG, AD?} BCD, EI >
9| 4 | AN, B’E, BL, CK, DJ, EH, FG 33
7| 4 | ABG, AM, B*D, CJ, DH 3
5| 3 | BK, P .
3| 2 | BJ, DG
1110 .
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Table No. 88 (concluded).

27

Ind. a.|Ind. 2.| Coeff.

8 |40 | 1
381 0
36| 1
34 |1
32| 2
30| 2
28| 3
26 | 3
24 | 5
22 | 4
20| 6
18| b
16 | 7
14| 5
12| 7
10| 5
8| 6
6| 3
4| 4
2|1
0/ 2

A8

ASC

A°F

A°B, A'C®

A°E, A3CF

A’D, A‘BC, A’C3 A*F?

A%, A’BF, A*CE, AC’F

A'B3, A‘H, A’CD, A*BC% A’EF, CF?
A3BE, A’L, ACI, A*DF, ABCF, AC’E

A'G, A*BD, A’B’C, A’CH, A?E? AC®D, AFI, BC? BF?, CEF

A’K, A?BI, A’DE, AB%F, ABCE, ACL, ATH, C*, CDF

A3J, A?B3 A?BH, A®CG, AD? ABCD, AEI, BC? BEF, C®H, CE? FI
A®N, AB%E, ABL, ACK, ADI, AEH, AFG, BCI, BDF, .
ABG, A*M, ABD, ACJ, ADH B’C, BCH, BE? C*G, CD? EL, FK I7.

ABK, AEG, AP, B’l, BDE, CN, DL, FJ, HI
ABJ, ADG, B, B*H, BCG, BD? CM, EK, H*
AO, BN, DK, EJ, GI

B*G, BM, DJ, DH

R .
G% Q

341. The syzygies and interconnexions of syzygies are given in

CDE

2,
El

25

43
5%

33
32
23
23

E 2

Table No. 89.
(5, 11) Al+BF—CE=0
(6, 18) ASD— ABC+4C* +F? =0
(6, 14) A?H— 6ACD —4BC’—EF =0
(6, 12) AL — 2CI 43DF =0
(6, 10) A%G —12ABD —4B*C—E? =0
(6, 8) AK + 2BI —3DE =0
(6, 6) AJ — B®* 4+2BH—-CG—9D*=0
(7, 15) A’BD—ABC?*4 ACH-6C*D — FI =0
(7, 13) A’K — ABI— 3BF +6CL +3FH = ;
(7, 11) AYJ — AB’4+ ABH—9AD?—6BCD—EI =0 |
7, 9 AN — BE— 6DI +2EH — FG =0
2BL + 6DI — EH+ FG =0
2CK —12DI + EH— FG =0
@7 AM +2BD+ CJ —3DH =0
o, (8, 20) 0.A%(AG —lQABD —43°C — E2) supra (6, 10)
—A(ABD—  ABC?! + ACH—6CD—FI) » (7, 15)
+B(A'D — A’BC +4C° + I?) » (6, 18)
+C(AH — 6ACD —4BC? — EF) » (6. 14)
—F (Al + BF — CE) =0 w o (5, 11)
e (8, 14) 0.A(AN— BE— 6DI4+2EH-FG) supra (7, 9)
+ A( 2BL + 6DI— EH+FG) ” ”
+ A( 2CK —12DI+ EH-FG) »
—2B(AL —2CI + 3DF) . (6,12)
—~2C(AK+2BI — 3DE) » (6, 8
+6D(AI + BF — CE) =0 . G uﬁ
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Table No. 89 (continued).

(8, 12) | ABD-BC+2BCH —C:G + =0
—3ADH - —2BCH+2C*G+18CD*+FK—2I'=0
EL+FK—2P=0

(8, 10) | ABK— CN—6DL—2FJ+ HI=0
AP +2CN+ FJ=0
Bl — CN+3DL+ FJ—2HI=0

(8, 8) ABJ—B'+4B*H— 9BD*+12CM — EK—3H?=0
ADG  +2B*H—12BD*+ 8CM—EK—2H’=0

(8, 6) AO+6DK —3EJ+2GI=0
BN+3DK— EJ+ GI=0

342. In illustration take any one of the lines of Table No. 88, for instance the line
(7,17) | 4 | A’BE, A’L, ACI, ADF, BCF, C*E | 23/ |

there are here 6 composite covariants, but the number of asyzygetic covariants is =4 ;

there must therefore be 6 —4, =2 syzygies; we have however (see Table No. 89) two
derived syzygies of the right form, viz. these are

A(AL—2CI 4+ 3DF)=0,
C(AI 4+ BF— CE)=0,
which are designated as 22/, and there is consequently no new syzygy =.
But in the line '
(7,15) | 6 | A’G, A’BD, AB°C, ACH, AF’, C°D, FI |, 3|

there are 7 composite covariants, but the number of asyzygetic covariants is =5 ; there
must therefore be 7—5, =2 syzygies. One of these is the derived syzygy

A(A*G—F*—12ABD—4B*C)=0,
which is designated by 3/'; the other is a new syzygy (see Table No. 89),

A’BD—ABC*+ACH—6C*"D—FI=0,
designated by . ’
343. Take now the line

(8, 20) | 6 | A'G, A°BD, A’B*C, A’CH, A’E?, AC°D, AFI, BC’, BF?, CEF | 6%, ¢ | ;
there are here 10 composite covariants, but the number of irreducible covariants is =6;
there should therefore be 10 —6, =4 syzygies. Thereare, however, the 5 derived syzygies

A*(A’G—12ABD—4B’C—E*)=0, &c. (see Table No. 89)

designated by 63'; since these are equivalent to 4 syzygies only there must be 1 identical
relation between them (designated by ¢), viz. this is the equation 0=0 obtained by
adding the several syzygies, multiplied each by the proper numerical factor as shown
Table No. 89. '
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344. Again, for the line
(8,14) | 5 | AN, AB’E, ABL, ACK, ADI, AEH, AFG, BCI, BDF, CDE | 6%, ¢ |

there are here 10 composite covariants, but only 5 irreducible covariants; there should
therefore be 10—5, =5 syzygies; we have in fact the 6 derived syzygies

A(AN—B’E—6DI+2EH —FG)=0 &ec. (see Table No. 89)

designated by 63'; these must therefore be connected by 1 identical relation (desig-
nated by ¢), viz. this is the equation 0=0 obtained by adding the several syzygies,
‘each multiplied by the proper numerical factor as shown Table No. 89.

345. These two cases (¢) are in fact the instances which present themselves where a
correction is required to my original theory. The two identical relations in question
were disregarded in my original theory, and this accordingly gave the two non-existent -
irreducible covariants (o, ..)(2, y)* and (a, ..)%(», y)*. Andreverting to No. 336, these
give in the denominator of A(z) the factors (1—a®2®)(1—e’s"). In virtue hereof,
writing =1, we have in A(z) the factor —%{-‘%2, =(1—a")’, agreeing with the function
(1-=)"'1=a)?....(1—a*)’... Andwe thus see that the denominator factors of A(x)
do not all of them refer to irreducible covariants; viz. we have

ax’, s, a’2%, o°20, a’°, o*at, otab, a'nt, af, A’y &°t, o'z, aSxt, a4, 7P, 'z, P, o,
each referring to an irreducible covariant, but ¢®#® and @®z"* each referring to an iden-
tical relation (s) or interconnexion of syzygies. And we thus understand how, consist-
ently with the number of the irreducible covariants being finite, the expression for A(x)
may be as above the quotient of two infinite products; viz. there will be in the denomi-
nator a finite number of factors each referring to an irreducible covariant, but the
remaining infinite series of denominator factors will refer each factor to an identical
relation or interconnexion of syzygies. But I do not see how we can by the theory
distinguish between the two classes of factors, so as to determine the number of the

irreducible covariants, or even to make out affirmatively that the number of them is finite.
346. The new covariants O, P, R, S, T, V are as follows :—



(Remarks added 17th March, 1871.—A. C.)

It will be observed that the Tables are printed in a slightly different form from the preceding ones; this has
been done in order to show at a glance in each column the set of terms which contain a given power of @, and
in each such set the terms which contain a given power of b.

The numerical verifications are also given, not only for the entire column, but for each set of terms containing
the same power of @ (viz. the equal sums of the positive and negative cocfficients are shown by a number with
the prefixed sign +); and in Table 95 the verification is given in regard to the subsets containing the same
powers of ¢ and b; as to these subsets, the sums of the positive and negative coefficients are not in all cases
equal, but a singular law manifests itself (see p. 44).
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Table No. 90 (Covariant O).

P bocf" + 1 @b bdfe - 1

: def? — 4 & EfF + 1
@ &f 4+ 3

a bef*  + 4

a® b -1 P deff 4+ 3

Pobegf? — 3 eof — 1

*f* 4+ 16 bc?ef? — 16

de*f + 4 ced*f? + 6

et — 15 cde’f  + 30

bdf? — 6 ce? — 8

cef 4+ 4 : dPf — 18

LedPf — 22 a* d* + 6
cde®  + 26

Poodf o+ 9 a B — 3

@t d¥¢  — 12 P beef — A4

dfF — 4

La, bef? 4+ 7 déf — 1

. Bedf* — 30 A7 418

cef  + 1 bedfr + 22

def — 74 CEf  + 74

de® + 84 cd’ef —160

be3f? 4+ 18 cde® — 32

cdef +160 d'f  + 8l

¢ — 98 d% -+ 6

cd¥f  — 20 P — 9

edie  — 94 ddef + 20

d'e  + 51 Sd —112

(| vl —m cdif — 18

Ad3f + 18 cAd%? 4284

de* 4140 i cd'e —216

i Edle —100 a d° 4+ 54
a cd?® + 18

a® blef? + 15

a’ bdf* 4+ 8 P bledf? — 26

: &f — 18 ce’f  — 84

bt — 6 d’f  + 98

cdef' + 32 de® — 45

cé 4+ 45 vt 4+ 12

» &f  +112 cdef + 94

Z d’?  —150 e 4150

| WP — 6 cd?f  —140

? cdif —284 cd® — 50

{ &dé + 50 dte  + 15

V cd’ 4320 bctef — 51

1 s —120 A +100

 betdf  +216 ¢de? —320

§ e’ — 15 Ad%  +310

| ¢d’  —310 cd®  — 90

‘ cdt 4130 Kedf  — 18

Wc’f — 54 e +120

ot c’de + 90 cld? —130

] a  ctd® — 40 a - Adt 4 40

t 4 + 1

59 49

497 559

1003 954

11563 +1563

W, )
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Table No. 91 (Covariant P).

a@® Bcdf? + 1 | & Bcef? — 2 |a®Wcf? — 1 |a0df* + 1 a2bdfP + 2 |a?dedf — 1
Poef — 2| AP+ 51t defP+ 6 |a® €7 — 1]F ¢ — 21 ceft 4+ 1
dPf + 2 def — 1\|\aé® &f — b b’cf? — b dPef? + 3
a déé — 1 |d® & — 2 abef® — 6 cdef? + 17 de’f — b
AV 4+ 1] deff + 11 ctf — T|d € + 2
APt — 1 |dVef* + 2| bef? — 11 ef — b afr — 4
ef 4+ 2 bedf? — 17 a¥? — 4 bef? + 4 |: df — 6 |a bdf* + 2
beif? — 3 ce’f + 13 de’f — 4 cdf? — 2| det + 5\|: &ff — 2
cdef — 6 d’ef — 32 ¢+ 17 cde¥f + 4 beft — 2
ce® +13 de® + 32 bltdf*+ 2 cet — 4 |a bfP + 1 cdef* + 6
d&f — 8| VS + 4 cef + 26 |1 def — 10 def? — 13 cff — 2
e 3 2 Adef + 36 cdief— 2 |a* d%® + 8 &F  + 12 d¥f? — 16
bc’ef +16 e — 24 cde® — 40 bclef* + 32 d*éf + 24
Edf — 2 cd¥ — 10 d¥f — 9la b + 5 cd*f* — 36 det  — 10
e —38 |1 cd?e®— 16 |a® dP + 24 |: bleef? + 4 cde’f — 42 | BcPef? + 8
cdde +34 |a* dle + 12 d*? — 26 cet 4 24 A+ 2
a? d° — 9 a bef? 4+ 5 def — 385 d%f + 56 cdelf — 52
a B’df* + 7 |: bedf? —. 4 e+ 42 d’® — 34 et + 28
a bcf? + 5| &f — 12 ce’f + 35 berdf? + 2 cdf? + 10 cddef + 52
Podef + 2 b 4+ 6 df — 26 cef 4+ 26 celf — b4 cd*® — 32
¢ —12 cdef + 42 de® — 22 cd’ef + 72 Sdief + 64 |1 df — 18
biclef —24 d¥ + 54| b 4+ 10 cde® —124 cdet + 46 la d'¢ + 12
ed’f +52 d’¢ — 91 cdef — 72 dif 4+ 13 cd'f — 37
cde® + 7 bcPef — 68 % —106 d%* 4 26 | cd’ — 50 |a® %P + 1
( de —22 Adif— 64 cd*f 4 76 Bef? 4+ 9la de + 21 |: def? — 13
b df —52 c’de’ + 14 cd®® 4210 cdef — 76 ef + 12
e +34 cd’ +204 d'e — 99 G — 56 | b+ 2| Bdefr — 2
cd’% + 8 d® — 93| dclef — 13 S + 10 | 1 beef? — 32 cd*f? + 38
ed* — 1| bcdf + 37 cdif— 10 cd?e* 4296 a*fr 4+ 24 cdef — 7
¥’ f 418 cte® 4 86 Ade® 4128 |+ cdte —260 Bdf? + 16 cet — 30
P ctde —25 cd’ —208 | i d%—184 |a d° + 72 ééf + 91 dPef — 34
a &d® +10 |a Jd* 4+ 86 |a cd® 4+ 72 cd’ef — 14 d* 4 85
o blef* — 17 cde® —105 bcdft — 34
b — 2 |a"bf? — 5 abdft 4+ 4| Bedf + 40 dif — 86 cef + 22
Pobleef 410 |1 def — 12| &f — 42 c’f  + 22 d’® 4110 cd’f— 8
d*’f —28 | Ucef + 34| b — 8 d’f +106 | bcf? — 12 ddeé® + 50
deé 430 cd*f — 46 cdef 4124 deé  —105 cdef —204 cdif + 25
b¥cdf +32 cde* 4105 ce® 4105 | B — 24 e + 20 cd®? — 70
¢ —35 d%e — 20 a3 + 56 ddef —210 ¢Ed3f 4208 de  + 15
cd?e —50 bdf + 50 d% —130 ¢ +130 cdze® +170 Befr 4 9
d* +30 B¢ —110 | bcef — 26 cd’f —128 cd'e —250 ddef + 1
bt —12 d% —170 Sd*f —296 cd?? +170 d® + 60 e — 30
ctde +70 cd* 4115 cde* —170 die — 25 bef  + 93 cdif — 10
dd —40 | bSf .— 21 cd® +340 | bclef + 99 cd¥f — 86 |: cdi + 40
tbhcfe —15 ctde +250 d® — 60 ccdif 4184 ctde? —115 |a® c*dte — 10
a® ctd? +10 cd® —150 b c'df 4260 cde® —340 | 1 dPe +150
%% — 60 cle® + 25 ctd® +150 |a® cd® — 40
a® J’d? + 40 ccd% —150 cd® — 40
POCf — 72| df — 72
a® cde + 40 |a® Jfe& + 60
+ 3 + 5 + 6 + 1 + 24 + 6
67 99 70 27 266 134
136 536 536 577 944 248
182 594 954 961
+388 +1234 +1566 +1566 +1234 +388

Y@, y)'.



Ay S | a® Bdef? + 2 a® Bdift 4 1
Pocdefr + 6 Lodef — 4 Podefr — 2
cdf  — 4 o e + 2 a®  ef + 1
a¥?r — 3
d*f + 1 a2 bt — 2 a bedft* — 6
@ det + 1 Poocetf + 4 Pt + 6
d¥f? — 14 df* + 38
a® bef? + 2 def + 30 b —_— 3
def? — 6 det  — 18 b3 + 3
ef  + 4 D°Pef? 4+ 14 SEdef? — 3
bcef? — 3 cAdéf — 66 aSf — 6
cd*? 4+ 3 et 4+ 26 ed??f + 3
cde’f — 18 cd®f + 56 t cdet + 6
cet + 17 ed?® — 18 a®  d% — 3
d?f 4+ 22 ds — 18
d* - 21 @ de + 6 a bdf3 + 4
bt + 13 R — 4
Adf — 12 a bft 4+ 4 bc*f? — 1
dde® — 21 def? - 4 cdef* + 18
cdf — 3 B*lef? — 30 ) — 16
P ocd¥ + 32 cd*f* + 66 i — 13
@ d% — 9 cet  — 18 di*f — 3
_ def — 84 de* + 15
a bY? — 1 d** 4 66 blef* — 22
PP 4+ 6 bcdf* — 56 adif?r + 12
de*f + 16 céf 4 84 cde’f + 18
et — 18 cded — 20 cet + 38
bdfr — 3 cdf + 40 cdief + 32
def + 3 a cdle — 72 ed?e®  — 102
cdlef — 18 if — 18
cde® + 14 a® bf® — 2 d*e? + 42
aiff  — 4l bicef? + 18 Wetdfr + 3
P 4+ 39 d}? — 26 cef 4+ 41
bdef — 32 de’f + 18 Adlef — 84
cd — 2 bcdfr + 18 dde®  — 76
a3 4+ 84 cef — 66 cdf  + 33
cdd*e® + 24 cd’ef + 20 cdé¢ 4 182
cdle — 106 d? + 58 P ocdle — 126
ds + 36 d’%* — 50 a d7 + 27
b’cef  + 18 bt — 6
ctdif — 383 cdef + 72 a® bief? — 1
ctde? — 25 e 4+ 50 def? — 17
P d% + 60 cAd3f — 156 ef + 18
a db — 21 cde + 90 bctef* + 21
ds — 30 ed’f? 4+ 21
a bef*  + 3 beef — 24 cde}f — 14
bledf* — 6 cdif 4+ 94 cet — 45
c’f — 15 cdde? — 90 d%f + 2
* d%f — 38 ad® + 10 d** 4+ 15
de® 4+ 45 b°ctdf — 18 bccdf?  — 32
B3 + 3 oo+ 30 cEf  — 39
cdef -+ 102 a®  fdPe — 10 cdf — 24
el — 15 de® + 175
cd’f 4+ 76 cdf 4+ 25
cd®® — 175 cd®?  — 120
de + 35 d’e + 15
betef — 42 bcif? + 9
Sdf — 182 ddef  + 106
cdeé + 120 ¢  — 85
d®e + 150 Ad? — 60
cd® — 70 Ad%  — 150
bdf  + 126 dde  + 175
4+ 8 2 — 15 + cd® — 45
~ 93 c'd% — 175 136 Ycbef  — 36
300 At + 75 476 Sdf 4+ 21
780 b°c§f — 27. 478 cidef + 70
oL TR w1
MDCCCILXXI. F
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Table No. 92 (Covariant R).

T y)

+1181
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Table No. 93 (Covariant S, =(a, ...)%(, ¥3°).
Coeflicient of a°.

Coefficient of 27%.

at ceft  + 9 V*ef — 9747 at  cft + 9 Veddef 418612
a2+ 21 Cdf — 8496 || 1 defd — 45 cd?%  —18900
vodeéff — 78 cide® 426610 at éfr + 36 d*f — 3888
a ff 4+ 48 cd'f 4 8544 die 4+ 2970
edf®  —16650 | o B}t — 9 botdfr  +15228
a bef? - 9 de 4+ 720 ||: begf® — 18 def  — 4968
Pooedf? — 162 oft o+ 972 d}s 4+ 243 Cdef —14544
cef* + 99 bctdef  +24624 def* + 9 cde’  —12960
d%f* + 309 déb — 5040 e — 216 Gdif  + 1296
dé’f  + 12 Ad¥f —15984 cdrr — 351 cd¥  +22500
¢ — 240 Adie —29340 cRf 4 144 cd’e — 6480
A — 8l Adte 434320 cdief* + 1836 P — 3888
cdef* 4+ 1026 cd® — 8640 cde’f — 2592 cdef + 5184
aSf — 768 ef — 7776 ce’ + 1152 el + 5760
cd’f? — 738 Sdf 4 5184 dif?  — 1458 ddf — 576
cd**f — 564 cde? 412960 D dEf + 2268 |1 cldPP — 9360
cde* 4+ 1056 tocld®e  —14400 @ d2t — 1008 | a cPde + 2880
Poodef + 756 [ a  Bd® 4 3840
a®  d* — 696 @ Bef? + 63 | bef? + 288
a’ bif* + 192 Bedf* — 234 | def* — 3888
@ bdf* 4+ 120 | i bcef?  — 1440 ce’f? — 18 &f  + 3645
roogr - 2l di?  — 192 dlef? — 3231 bicef? 4 756
BAfE 4 486 def  — 1080 déf  + 4293 cd’f 4+ 7488
cdef* — 2160 et + 2025 & — 972 cde’f — 4050
cf  + 1023 biedfr 4 1728 bfs 4+ 810 cet”  — 6075
i+ 120 Cef  + 4410 Cdef? — 3825 d%f — 4320
d*ef — 1053 cd’ef 4+ 5280 ce®f  + 4032 d** 4 6075
det”  + 1314 cde’  —13500 ed3f? 4+ 7938 Bdfr — 7128
bcef?  — 1863 dYf  — 4800 cd?ef — 9360 SEf + 2970
Gdf* + 2538 die 4 7800 cdet” — 864 cd%f + 3060
cdef + 2340 Belfr  — 648 d'ef — 1296 cde®  +10125
ettt + 672 Sdef  —14040 d*¢ 4 2700 cdif 4+ 1440
cdef + 2820 e + 3075 clef? — 324 cd’?® —13950
cd?®  — 7812 cd3df 4+ 9120 cﬁdffz — 2484 d’e 4+ 3600
d5f  — 3024 cdie 116350 Fde’f + 6624 Bef 4+ 1944
d*e® 4+ 4572 cdie —19200 et — 6912 cidef — 1620
Pedf*  — 324 d° + 4800 Gdlef — 4428 ¢t — 4500
def 4 3888 bicef  + 4860 Adi? +12672 SdF — 360
cdief — 8748 cdf — 3240 ed’f + 1944 |1 ddiF 4+ 6300
Ade®  — 4800 clde? — 8100 :ocedie® — 9072 | «® e — 1800
GdYf 4 4248 | i Ad% 4+ 9000 || g2 g% 4 1944
cid¥® 414520 a  Ed® — 2400 .
i cde  —11448 a bdf’ + 144
@ d7 4+ 2592 ©efr  — 243
peft — 900
a blcf? — 576 cdef? 410620
def* + 672 ce®f  — 8586
ef  — 459 d’f?  — 864
Blef*  + 3456 dief — 1215
cdf? — 864 det”  + 1215
cde’f 4+ 2094 bicdef* — 1836
cet — 3915 cAd¥? —16812
d%f + 528 cde’f + 6651
d*® — 45 et +12960
Bédf? — 2592
+ 78 + 45
3258 5652
41253 43020
124524 106020
68640 47691
+237753 +202428
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Table No. 93 (continued).

Coefficient of zy”

Coefficient of g°.

at dft - 9 bcde*f —18612 | o® bdft — 9 cef? 4 3024
@ & 4+ 9 GetT 4 4320 | S 4 9 AT — 4248
Adf +14544 éft — 21 c'de’f — 8544
a® bef* 4+ 45 Ad?? — 3060 cdef®* + 162 clet + 4800
def* + 18 cd’f — 5184 et — 120 Cdief  +15984
ff — 63 cdie  + 1620 a4+ 8l cde  — 9120
defs  — 243 A — 1944 diefr — 486 |1 Odf — 5184
cd?* + 351 cEf 4 3888 || 1 delf + 576 | a d'¢ 4 3240
cde’f®* + 234 cdef — 1296 at e — 192
cetf  — 144 clde® — 1440 a’ bef? + 240
def? — 810 |: AdY 4+ 576 | @ bft 4+ 78 |1 bledf® — 1056
d¥*f 4+ 900 |a die + 360 :odef®* — 99 ce’f?  — 1314
o  dé — 288 e+ 21 d?ef* — 672
a® Vdft  — 1152 bcleft — 309 def  + 3915
a® b+ — 36 ef? + 972 cdf®t — 1026 e — 2025
Beefs — 9 Bfs 4 1008 cdef? + 2160 BSfs 4+ 696
d¥P — 144 cdef? + 864 cf — 672 ddef? + 7812
def? 4+ 18 cef — 1215 dPef? + 1863 cef + 45
¢f - 243 dsf? 1+ 6912 d*%f — 3456 odf? + 4800
bedfs — 1836 d*e’f —12960 déb 4+ 1440 cd*e’f —26610
cef? 4 3231 det” 4+ 6075 cdfs + 738 cde” +13500
cdlef* + 3825 Boef? — 2700 At — 120 def  + 5040
cdé’f —10620 Fdfr —12672 cdef? — 2538 4% — 3075
cé® + 3888 Ade*f 18900 cde’f + 864 b*clef? — 4572
d¥? 4 324 et — 6075 ce® 4+ 192 Adf? —14520
d*f  + 1836 cdf +12960 od'f? + 324 Cdef +16650
¢ — 756 cd % —10125 odef + 2592 det”  — 7800
P 4 1458 bd 5f — 5760 cd’* — 1728 Adlef 429340
ddef? — 7938 die 4+ 4500 | i def — 972 cde® —16350
GeSf 4 864 Bodfr + 9072 | @@ d'¢  + 648 edf  —12960
cd¥f? + 2484 cef  — 2970 cd*¢® 4+ 8100
cdief +16812 cdef —22500 | o bt — 48 bedf* 411448
cdet” — 7488 AdeS 413950 || i Beefr — 12 cef  — 720
cdlef —15228 cdf  + 9360 a4+ 768 cidef —34320
cd®® 4 7128 cd* — 6300 def?  — 1023 c'de® 419200
i d% 4 3888 befr  — 1944 &+ 459 Sdf  +14400
a® d’¢® — 1944 cdef + 6480 Bdf* + 564 cdie? — 9000
ce — 3600 Gef? 4+ 1053 afF — 2592
a blef* + 216 |: ¥ — 2880 cd?ef? — 2340 c’def  + 8640
Bedf* -+ 2592 | c'die + 1800 cdf — 2094 FS — 4800
ceff?  — 4293 ceb 4+ 1080 | i cd¥ — 3840
dPef* — 4032 2 — 3888 | o e + 2400
dé’f 4+ 8586 a*éf  + 9747
é — 3645 d?t — 4410
Befs  — 2268 betfs  — 756
ddef? 4+ 9360 ddefr — 2820
GSf 4+ 1215 cef  — 528
cd’fr — 6624 cdif? + 8748
cd?f — 6651 Edef + 8496
cde*  + 4050 cdet — 5280
d'ef + 4968 cd'ef —24624
d%® — 2970 cd’e® 14040
bclef? -+ 1296 df  + 7776
cd’f? + 4428 ¢ — 4860
-+ 9 + 828
T1548 10920
45999 79779
62019 146226
92853 +237753
4202428

F2
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Table No. 94 (Covariant T, =(a, . ..)"(2, ¥)").
Coefficient of .

Coefficient of .

at dft
H oy i
cd’ef?
cde’f?
ce*f
df?
d®f?
: dQfo
at  de

@@ bedf*

T celft
d 2 €f3
de’f?

of

b 3
c*def?
3
cd3f®
cd?e*f?
cde'f
ceb
d4 qf’2
d3f
d%®

bO c4 €f3
C3 d 2,3
g
et
def?
Ad3f
c*de’
cd®f?
cd*eéf
cd’e?
def

a3 d5 6’3

ef?

b3t
cdef
ce’f?
d3 3
7,
de'f’
eﬁ

b?caqf'-'l
Ad3fs
CAdef?
crf
cd’ef?
cd?e’f
cde’
df?
die*f
det

a® bdft

I I [ A S R Ry iy

+Il+++1 00+ I+ T+ T+ 0+ 1+ 0+ 1+ + 1+

L1+

—

—
AT 19 OO0 O 19 S =

ha B SRS

b cdf?
04 82 2
c3 d 2 €f2
cdedf
Ca 65
02 d 4 f2
cdif
02 d 2 e4
cdef
cdte®
arf
d 6 e?
b%cf3

dilef?
cef
c*d3f?
cdif
ctdet
cad 4 Qf
c3d 3 63
cdsf
02 d 5 82

: cd 76

a2 d 9

a bsqf”ﬂ
. d ejpa
\ e3 2

bicefs

+ 90
— 198

9
238
116

6
108
513
294
513
108
153
27
108
194
42
— 663
274
570
914
153
—1032
486
81

7
16
9
53
104
150
117
48
138
108
82
315
153
390
234
114
308
735
208
283
27
396
337
222
783
880
93
1986
240
+1098
— 144

PA L+ b+ T+ 1 T+ ++1

I+ 1+ 1+

|

b+

Lr++++1 1+ ++1 T ++

b 4 81
cdi?r — b4
Cdef A+ 570
cet — 148
c'dlef —1116
ctd?® — 527
Acdif 4+ 474
ccde®  +1662
cdfe —1185
cd® 243

Vief  — 216
df  + 369
Fdet + 340
cdif — 149
cd®  — 730

: cde -+ 488
a ccd? — 102
a® bt - 2

boeef® + 20
s — 24
de’f? + 72
et - 54

Vedfs 4+ 16
e — 129
edief* — 108
cde’f  + 72
ce’ + 135
aif? + 84
d*f - 112

peri  — g
cdef*  + 240
cef  + 179
¥ — 144
cd*f  + 306
cdet — 765
cdef  + 28
ed’® 4+ 280
af - — 88
d’*  + 40

5305(?]02 — 63
cd*f® 4+ ag
cdelf  — 798
c'et + 175
ddf  — 224
cd*® 1365

BAd’f 4+ 368
Edie? —-1025
cdCe + 60
da® + 30

b*cbef
cdf
cde®
cdif
ctd®e?
dde
cd’

b Jdef
cled
a3
cSd?e?
c’dle
ctds

bcef
cd*f
c®de?

P ddP
o SdEf

A

P+ 1l ++ 1 +++ 1 1+

+ 26
436
3738
9116
6380

+20196

252
798
700
578
370
880
240
486

60
312
645
735
190

81

54
135
150

40
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Table No. 94 (continued).

Coeflicient of . Coeflicient of .
at edft 4+ 1 cd'e®f 4 396 || i b%ef2  — 108 | : bcdf* — 486
Poddft — 2 cd’  — 240 ||t QY + 153 | déf 144
e 1 d'ef — 81 | fdef + 240 | Sdf +1185
d%f* — 3 d’e + 63 et + 88 ¢cde®  — 60
d*éfr + 8 cdft — 18 cdlef  — 474 ¢cdif — 488
: dé’f - 7 defr 4+ 6 &’d?*  — 368 cd®e?  — 880
at e + 2 cdd%f* + 6 adif + 149 c‘dle + 735
ddéf  + 114 cdiee 4+ 578 cd’ — 150
& it — 1 ¢t — 84 | d% — 312 b°f? + 81
Podeérr 1 2 cdfT + 42 |a d® + 54 ddef — 243
e'f? - 1 Sdielf — 222 ¢ - 30
L Ad%t + 144 | @ Beft — 1 dd3f  + 102
aeft 4 - 7 |t ddf + b4 P def? + 28 dd2® 4+ 240
cd’f®* 4+ 30 |.a® cdie -~ 42 é — 27 | fde - 190
cdé’f*  — 46 : Vefs  — 11 | & Fdb 4+ 40
ce’f + 16 | a bdft - 5 cd}f®*  — 68
d? + 6 |: & + 5 cde’f? — 12
d%* — 39 bt + 7 ce'f 4 108
d*'f + 53 cdef® — 62 d?f? — 116
de® — 20 ce’f? 4+ 48 d*f  + 234
bt + 6 d¥s  + 64 de’ — 135
ddefs — 44 defs 6 Va8
et + 20 de'f  — 117 cefr 12
adiE 4+ 11 o + 54 cdef? + 513
cd*ef* + 105 ’Cef® . + 8 cde’f  — 735
cdetf  — 104 adt + 29 cd'f?  + 274
et + 24 de*f* 4+ 57 cd’?f — 880
cdlef? — 90 ef — 138 cd?*  + 765
odSf + 82 cddef? — 238 def - 148
cd?® — 16 cd**f  + 390 AC — 175
dsf? + 27 cde’ — 72 bPcfs — 24
I A3 — 104 ddef* — 513
@ die + 6 d*e®f + 3837 ' 4 283
A% — 179 cdifr — 914
@ bedft 4+ 12 btdft  — 75 Ad%f  +1986
Lot — 12 cte? — 3 Adet — 280
def*  — 21 cdf? — 108 Gdlef  + 527
de’f? + 30 cdef  + 308 Ad%  —1365
ef -9 cceb + 112 cdf — 340
b3t — 12 cadif? 4 663 cd’e® 4+ 700
Adef* + 69 d3ef — 783 d’e — 60
et — 33 Ad% et — 306 bclef + 153
et — 96 cd’ef  — 570 cd¥? +1032
cd’ef? — 18 cd'e®  + 798 cdelf  —1098
cde'f 4+ 150 di’f 4+ 216 et — 40
ce® - 72 d%® - 252 ddf —1662
dief?  + 198 besfr  + 27 dd?®  +1025
d*f — 3815 c’def?  + 294 cd¥f + 730
d%e® + 129 cbed — 208 cdiet  + 370
beef* + 6 dd¥f — 93 || 1 e — 645
cd i+ 66 dd¥?r  — 570 | 1 cd® + 135
cdeif? — 114 ctdet  — 28 + 12
cetf 4 48 cdief  +1116 = 395
Ad¥ef? + 9 Adé¢ + 224 ' ]b50
dd*f — 163 cdf  — 369 6511
c2de® 4+ 108 cd’e? — 798 11628
ed’f — 108 | : cdie + 486
Pooae —~ 81 +20196
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Table No. 95 (Covariant V, =(a, . .

z coefficient,

)%z, 3.

7 coefficient.

@ Bdf’ _ 2 @ Wed¥s  — 2

: et o+ 2 : deft + 4

cdif* + 10 e — 2

de’ft — 16 Ad¥eft + 6

e+ 6 d%*f? — 16

cdft — 6 : de’f? 4+ 14

a3 + 12 @ df - 4
d%f? — 10

i dfF 4+ 6 |aB a2 + 2

a® e - 2 : delft — 4

e 4+ 2

a* bedf*  + 4 betdf*  + 10

: et — 4 eft — 10

Adeft —~ 10 cd?ft — 26

de’f* 4+ 16 de’f® + 32

eS 2 — 6 e5 2 —_ 6

b + 6 dAdift — 30

cdef* — 26 d*f? + 84

efs + 08 d%*'f? — 50

cdift 4 32 de’f — 22

defs — 116 "+ 18

de'f?  + 180 Bocif® - 6

SfF  — 78 ddeft  + 32

Cdeft 4 24 &3 — 8

d*3fr — 20 adift 4+ 4

déf — 44 dicfs — 104

de? + 34 detf?  + 90

Wctef* — 30 é — 26

Ayt 4+ 4 cdf* + 96

de’f® 4 240 d%*f? — 160

et — 130 d¥*’f 4 124

dlef? — 160 de?  — 36

d*f? — 280 Adsfs — 36

de’f 4+ 332 aefr + 72

¢’ — 54 : dte'f — 60

cd’fs 4 24 at  d%* 4+ 18
d*f* + 360

df — 320 a® bedft — 16

d%*® 4+ 38 : eft  + 16

def? — 108 cd%ft + 8

: aef + 96 eff — 8

at  de — 12 b*cf* + 12

cdegf*  — 116

a® bt — 2 eft + 80

: e’ + 2 cd¥*  + 240

b3c3f® — 16 a2 — 160

cdeft + 32 de'f* — 120

Aot — 8 ef + 76

def* + 80 Cdiefs — 120

detf? — 160 dse’f? — 80

e+ 72 d’’f + 368

de’ — 180

+ 36 + 24

20 4

284 144

1094 436

2 24

+ 184 + 776
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Table No. 95 (continued).

& coefficient.

7y coefficient.

a® bcPef* 4+ 84 a® bcleft 24
PoddYt — 104 T dd¥t — 160
s T |1 Cer o
e e —
cd’f® + 320 Adlef® — 560
@Ef + 80 d*¢f? +1280
de’f  — 496 de’f ~ — 688
4 4+ 252 e + 184
c"d{f};3 — 72 cd;f32 4+ 288
it S
e elf  —
d%®  — 404 d%® + 264
bedft  + 96 Adef? — 144
Sf — 120 d*ef + 336
Ad%f* — 560 dié  — 144
déf*  + 160 Wodft 24
ef + 304 efs — 72
cdf®  + 280 c'df® + 280
g:ej{f +14§0 d?e;fz — 440
e — 960 € + 400
ds” — 376 Adis 140
cd’f? —1296 d*f + 40
d*f + 80 déé  — 368
A+ 832 cdief* + 108
"oy T ol ¥ s
ef  — e :
d%e* — 240 cdf — 36
DO — 36 : d’* — 168
cdef®  + 288 a® d’e® 4+ 36
éfr — 56
cdifs  — 140
w5
et — 276
cdtef? + 420
d*Sf  —1120
care T8
giezf '+lg§g a 1)50"62"54 + g
4 — 167 : € -
cdlef — 864 bief* — 10
d%* + 876 cdeft* + 180
Do 4 162 eft — 160
a® d%* = 162 Adit — 130
diEfs 60
de'f? 4+ 60
a® Ve f° + 14 BcPeft — 20
P deft — 6 Ad¥*t — 280
T A ‘AT a0
e — e
cd*f* + 90 cdief® 4+ 160
defs  — 120 déf  — 192
¢f’ 4+ 60 e — 108
+1656 +2696
3624 1264
4898 6
+ 14 + 300

39
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Table No. 95 (continued).

x coefficient. y coefficient.
a® b'ldPef* — 280 @ B’ — 56
: die’f? + 300 : d'ef? + 940

de’f + 216 d’e'f — 1580
4 — 216 d?® 4+ 756
vedft — 160 betdft  + 360
efP — 80 eft — 420
cEdPef* + 1280 CdPef* + 1440
ef  — 312 de’f? — 2160
cdift — 440 éf  + 984
de’f? — 2160 Adif® — 480
df + 1740 d'éf? — 1320
de® — 216 d’e¢'f 4 2040
cdef? 4+ 2344 de¢ — 732
d'e’f — 3240 cdief? — 768
¢+ 1244 d'e’f + 2640
Bt + 72 db  — 1440
c’def* — 240 S Adif 504
2+ 940 déf . — 1206
cd*ef? — 1320 &+ 648
de'f — 2640 beff*  — 108
é + 908 cdef* — 1296
cdlef* + 600 SfF + 2344
def + 3360 cddifP + 420
d*® — 168 d’e*f? + 600
cd¥? — 1656 deff — 3420
d°ef + 3408 8 — 1172
diét  — 3480 Adtef> + 900
Odief — 1008 df — 1280
de® 4 1224 d¢® + 6360
beefs  — 144 edifr — 576
CBfS 4+ 108 def + 1668
def* — 768 diet  — 6420
df  — 700 cdlef — 576
c'def* - 900 d%¢ + 2988
d*ef + 8160 . cdf  + 162
de®  — 2148 d% — 594
cdfr + 912 Vcef* 432
dief —15060 S — 144
dle' 4 2800 de’f* — 1656
cd'ef + 6624 ef — 1516
dies  + 2052 cdf? + 912
cdf — 918 &Ef + 7312
die¢  — 2304 de” + 2344
d%e 4+ 486 ddf? — 124
Paefr 4+ 504 d'e®f — 8020
cdef? — 576 d’¢*  —10100
delf — 2288 cdef + 3792
-+ 1172 d’¢®  +14648
cdifr — 124 cdf — 702
def + 4336 die  —10296
d’* — 2540 P cde 4+ 38564
ddef — 1912 @ dh — 486
¢ + 2100
cdif  + 240
d¢* — 1560
N c*dbe + 810
@ cd® — 162
+ 666 + 2236
6608 8616
10512 15442
22042 +33044
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Table No. 95 (continued).

& coefficient.

y coefficient.

a U — 4
et — 22
APt — 26
de’f* + 76
Bedft  + 124
efs + 368
cd?f® — 688
de’f? — 192
cdift + 400
%2 4+ 984
di'f — 2160

de® + 1080
b'ft  — 60
cdef® — 480
Af? — 1580
a3+ 40

d*e*f? + 2040
detf + 2910
I — 810
cdief* — 3420
d3e*f 4+ 4800
d?*® — 3510
df? — 1516
d*e f + 2156
det — 430
bcfefs 4+ 336
cdd¥ft — 40
déf? + 2640
e'f  + 1840
def? — 1280
d*f —13360

de® 4+ 3200
cdifr + 7312
d*ef — 2360
d%d 4+ 3840
cd%f — 5344
die® 4+ 2800
Ay 4 1956
d’¢ — 1680
bdfs — 36
ef? — 1296
cd%f? + 1668
déf — 1312
é — 2060

c'df? — 8020
d*Cf +15220

a bcf® + 6
Poocdeft — U8
S+ 72
Boleft  — 44
cd’* + 332
de’f’ — 496
ef? 4+ 216
AdPef* + 304
d*ef? — 312
brdft — 320
& + 860
Jdef* — 960
dedf? + 1740

& — 2160
cdf®* + 420
d%ef? — 2640
d*if + 2910
de® 4+ 540
def? — 700
d'é¥f + 1840
d%* — 1530
B3c5F4 + 96
cdef* + 80
ey — 3240
AdSf® — 1120
d?ef* 4 3360
de*f + 4800
o + 2520
cd’ef? + 8160
d*ef —13360
d* — 6000
cd'f* — 2288
dief — 1312
dét + 9360
d’ef + 1824
d%e® — 2880
Vcef* — 72
cd¥s 4 1620
delf? + 3408
ef + 2156
c*d%f? —15060
d*f — 2360
de®  — 9260

Adof? + 4336
dief +15220
d%* 419920

d*' 4+ 1180 Gd%f — 5808
Adef 4 3712 dieéd  —22740
d*e® — 8540 cd’f — 90
cd’f  — 2952 d7e 410080
cd 4+ 3330 ’d% — 13850
¢d®  — 810
- 4 + 78
+ 484 28 852
2956 — 84 8310
11806+ 140 30200
23924 —140 + 56740
+ 250264 84 -

41
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Table No. 95 (continued).

& coefficient. y coefficient.

a bcdef* — 576 a bddft — 864
: ef 4 1824 : ef?  — 1008
¢df + 3792 Sd3efr + 6624
d’e’f — 5808 dé’f — 5344

det” + 3240 e+ 1720
cdief — 4768 FdyfR — 1912
d%® — 6240 d*f + 3712
c¢df  + 2608 d%t 4+ 4920
d’¢® 412440 cld’ef — 4768
cd’e — 8160 die® —16520
Ad® 4 1620 Ad’f  + 1920
bef?  + 162 d%* 19440
A — 702 Adfe — 9540
def — 90 ed® -+ 1620

et — 1290 »ft 4+ 162
dd%f + 1920 cdefr — 918
d%*  + 3640 éf 4+ 1956
Sdf — 796 cdifr 4+ 240
di¢ — 5340 dief — 2952

. c’d% 4 3100 det — 3440
a d® — 600 Sdief + 2608
d** -+ 8760

cdif  — 796

dbe? — 9160

I oidle 4 4260

a &  — 720

a® bscod°(§f4 + 18 a° Z)?fﬁ — 2
P bedft — 86 | beeft 4+ 34
eft — 180 S~ 54
Cd%f® + 184 def* + 252
de’f? — 108 efr — 216
pEfT 18 pedft  + 38
cdef* + 264 . — 404
eff + 756 cde’ef® — 376
cd¥s — 368 défr — 216
d*f?— 732 &f  + 1080
de'f + 540 dfs — 276
c'dlef? — 1172 - d¥r g 908
a*¢f + 2520 d%f — 810

d%® — 1350 Heif - 12
bclef®t — 144 cdefs 4 832
Sd¥? + 876 S 4 1244
de’f? — 1440 cd¥ft + 1112

elf — 1530 defr — 168
Ad’ef* + 6360 detf  — 3510
d%f — 6000 e — 1350

de’  + 1350 cd'ef? — 2148
cd’f*  + 2344 d%f 4 3200
d'ef — 9260 d’¢ 4+ 1350

d?*  + 7200 A 1172
d’ef + 1720 d’ef — 2060
dbe3  — 1900 di¢t 4+ 450

: 6405(1}('3 — 168 : 6405€f3 — 240
: ef? 4 648 o ddit — 1620
+25524— 28 + 39956
8818+ 4 17986

+ 18 - 2

184 —140 270+ 16
36224476 2026 — 56

+19350—924 +9248+4112
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Table No. 95 (continued).

z coefficient. y coeflicient. -
a’bicd?ef? — 6420 a®b'def? — 3480
: de’f  +°9360 Poodf — 430

& + 450 Ad3ef? + 2800
Adif? —10100 d%f + 3840
d’ef +19920 deé” 4+ 7200
4% —10300 A — 2540
cdef + 4920 dief + 1180
d* —10100 d3et —10300
cd’f — 3440 cd’f + 3240
d¢ 4+ 7100 d’é + 600
Adde — 750 B — 1290
»ft + 386 diee + 900
ddef* + 2088 Bedft 876
e — 2880 ef? 4+ 1224
cdYf? +14688 cd’ef? + 2052
dief —22740 déf + 2800
det  + 600 e . — 1900
Adief —16520 ¢dif? + 2100
d%  +23300 d%if — 8540
SdSf  + 8760 . d’t —10100
d%e  — 5200 cdoef — 6240

Ed’le  — 5400 d*¢ 423300

cd® 4+ 1500 Ad'f  + 3640
Befr  — 594 dle  — 8800

dd¥}? —10296 cdbe — 750

def 410080 d» 4+ 450
e+ 900 bt — 162
Ad¥%f +19440 cddef* — 2304
% — 8800 Sf  — 1680
Sdsf — 9160 cd’f? — 1560
d*e® —11900 det  + 7100
c*db 413900 Sdtef +12440

Ad® — 8150 d3e® — 5200

bc'df* 4 3564 cd’f — 5340
e? — 1350 d’¢ —11900
Sd%f — 9540  Sdle +10800
de®  — 750 ad® — 2250
ddif  + 4260 bogf?  + 486
di¢  +10800 AP+ 810
¢’ — 9100 déf + 3330
cd’ + 2000 et — 750
Wt — 486 ddf — 8160
Adef + 1620 d2%  — 5400
& 4+ 450 ¢d’f  + 3100
cdif — 720 die® 413900
d* — 2250 c’d% — 9100

T cddle  + 1800 c'd® 4 1800
a Jdd¢  — 400 Bocdfr — 162
& — 810

Cd?f + 1620

deé 4 1500

cdif — 600

d’* — 3150

: dd%e -+ 2000

a® &dT — 400

+41278+1120 419760 —140
51872~ 868 36330+112
439004 420 30340— 56
20624 — 116 23410— 16

+ 3856+ 14 + 5120— 2

G2
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It may be noticed in regard to the numerical coefficients that we have as follows :—

& coeflicient. y coefficient.
a* b + 36 as b - + 24
—_—t 36 —_— 24
at b? + 20 at b? + 4
o 284 b 144
o 1094 o 436
—1 1398 Se————1 584
bt 2 b + 24
b 184 b 776
b 1656 b 2696
b 3624 ° 1264
o 4898 ' ——+ 4760
————+ 10364
a? b + 14 a* b° + 6
b* 666 b 300
b 6608 b 2236
b 10512 b 8616
b 22042 b 15442
o 9162 & 33044
—————+ 49004 ———+ 59644
abl— 4 + a b + 78.
o° + 28 48 b 852
b— 84 2956 b 8310
bt + 140 11806 B 30200
5 —140 23924 b 56740
5 + 84 25026 b 39956
b~ 28 25524 5 17986
?° + 4 8818 ——— 4154122
+ 256 + 98102
+ 98358
a® b + 18+ b~ 2
o —140 184 o + 164+ 270
5 + 476 3622 b~ 56 2026
b°—924 19350 b +112 9248
bt +1120 41278 b*—140 - 19760
b°—868 51872 #4112 36330
B + 420 43900 b~ 56 30340
5'—116 20624 b + 16 23410
b° + 14 3856 - 2 5120
+2048 184686 +256 +126504
+186734 +126760
+345894 +345894

viz. in the & coefficient, the coefficients of a°3° are 336, that is the sum of the positive
coeflicients is =+ 36, and the sum of the negative coefficients is =—36. But in ab®
the coeflicients are + 28448, that is, the sum of the positive coefficients is =476, and
the sum of the negative coefficients is = —48; and so in other cases. The total sum
is 345894, viz. the sum of the positive coefficients and that of the negative coefficients
(taken as a positive number) are each =845894, and so in the y coefficient there is the
same total sum 3345894 ; which is as it should be, since there are in a different order
the same numerical coefficients.
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Article Nos. 347 to 366.—S%ketch of Professor GORDANS proof for the finite Number,
=23, of the Covariants of a Binary Quintic.

347. I propose to reproduce the leading points of Professor GorpAN’s proof that the
binary quintic (e, b, ¢, d, e, f Y, y)* has a finite system of 23 covariants, viz. a system
such that every other covariant whatever is a rational and integral function of these 23
covariants.

348. Derivation.—Consider for a moment any two binary quantics ¢, 4 of the same
or different orders, and which may be either independent quantics, or they may be both
or one of them covariants, or a covariant, of a binary quantic . 'We may form the series
of derivatives

(@, 4’)0:@‘!’9 ;
‘(¢> \p)l:]-_z_¢l\p2 =a¢¢ . ay\p—ay¢ . am"ﬁbs
(0, 4 =Tps=0%p. B1h—20.2,6 . D.D,b-+ 00 . Oy

where, however, there is no occasion to use the notation (¢, 4)° (as this is simply the
product ¢+, and the succeeding derivatives may (when there is no risk of ambiguity) be
written more shortly (p¥), (p¥)% (¢d)?, &c.; in all that follows the word ¢ derivative”
(GorpAN’S Uebeweinandwsckiebung) is to be understood in this special sense.

849. The degree of the derivative (gd)* is the sum of the degrees of the constituents
@, ¥; the order of the derivative is the sum of the orders less 2k; it being understood
throughout that the word degree refers to the coefficients, and the word order to the
variables. In speaking generally of the covariants or of all the covariants of a quantic
J> or of the covariants or all the covariants of a given degree or order, we of course
exclude from consideration covariants linearly connected with other covariants (for
otherwise the number of terms would be infinite); but unless it is expressly so stated,
we do not carry this out rigorously so as to make the system to consist of asyzygetic
covariants; viz. it is assumed that the system is complete, but not that it is divested of
superfluous terms. |

850. Theorem A.—The covariants of a quantic f of a given degree m can be all of
them obtained by derivation from f and the covariants of the next inferior degree

(m—1). .
In particular for the degree 1 the only covariant is the quantic f itself; for the de-
gree 2 the covariants are (f1)°, (ff)% (ff)% ....: using for a moment 8 to denote each

of these in succession, the covariants of the third degree are (31)°, (Bf) (Bf)% ...; and
80 on.

851. Suppose that the covariants of the second degree (ff)’, (ff), (ff)!... are in
this order represented by f3,, B, s ... then the covariants of the third degree written

in the order

BSYs BS)s B+ (Baf)s Buf)s B oo (BSYs (BsS) Baf) -
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may be represented by ¢, ¥s, ¥s, - - -, the covariants of the fourth degree written in the order

@I @) G e Vs () (o F -« s )y () -

may be represented by 3,, 9,, 8, ..., and so on: we thus obtain in a definite order the
covariants of a given degree m ; say, these are p,, by, g, oy - .. .+ any term g, is said to
bea later term than the preceding terms w,, w,, and an earlier term than the following
ones, ,, ws &c. . '

Observe that each term w, is a derivative (a,f)*, the derivatives of an earlier A are
earlier than those of a later A; and as regards the derivatives of the same 2, the deri-
vative with a less index of derivation is earlier than that with a greater index of deri-
vation, or, what is the same thing, those are earlier which are of the higher order.

352. The series w,, y, s, g - - - . is not asyzygetic; we niake it so, by considering in
succession whether the several terms p,, ws, ... respectively are expressible as linear
functions of the earlier terms, and by omitting every term which is so expressible. The
reduced series thus obtained is called T, T,, T,, ... Observe that not every w is a T,
but that every T is a w; every T therefore arises from a derivation upon f and a certain
term A; which term A (supposing the A series reduced in like manner to S, S,,S;, . ..) is
a linear function of certain of the S’s. Fach later T is derived from later S’s, or it may
be from the same S’s as an earlier T; viz. if the later T is derived from (S,, S,, .... S,),
then the earlier T is derived, it may be, from (S,, S,, ..". S,), or from (S,, S,, ... S,_;), but
so that there is not in the series any term later than S,.

And if, considering any T as thus derived from certain of the S’s, and in like manner
each of these S’s as derived from certain of the R’s, and so on, we descend to any pre-
ceding series,

it will appear that the T isderived from a certain number (M,, M,, ... M) of the terms
of this series. '

353. The quadricovariants ( f1)°, (ff)% (ff)’, ... are of different orders, and conse-
quently asyzygetic. They form therefore a series such as the T-series, and they may be

represented by ‘
B,B,B,.....

Supposing £ to be of the order n, B, is of the order 2n, B, of the order 2n—4, B, of the
order 2n—8, and so on. Those terms which are of an order greater than n, are said to
be of the form W (agreeing with a subsequent more general definition of W); those which
are of an order equal to or less than n, are said to be of the form y; so that the earlier
terms of the B series are W, and the later terms are x; viz. the y terms taken in order,
beginning with the earliest, are %, % X - - -

354. By what precedes any particular T is derived from certain terms B,, B,, .... B,
of the B series. This series, B,, B,,...B,, may stop short of the terms , or it may
include a certain number of them, say %, % .- - %~ The terms derived from the y’s are
in the sequel denoted by P.,.
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865. Every covariant whatever is a form or sum of forms such as

ToT3D5 ... fife s
writing in regard to any such expression

2 ind. 1=%, ¥ ind. 2=j, ...
(viz. 7 is the sum of all those indices @, 8, &c. which belong to a term containing the
symbolic number 1,7 the sum of all the indices «, y, &c. which belong to a term con-
taining the symbolic number 2, and so on) then each of the numbers ¢, 7, ... is at most
=mn, that is n—14, #—J, ... may be any of them =0, but they cannot be any of them

negative; the degree of the function is =m, and its order is =mn—i—j.... It isto
be further observed that the form is a function of the differential coefficients of f of the
orders n—i, n—j, &c. respectively. It follows that if n—g, n—yj, ... are none of them

=0, the form in question may be obtained from a like form belonging to a quantic
f' of the next inferior order »—1 by replacing therein the coefficients @', ¥, ...
by ax+by, bx+cy, &c. respectively: for example, if f denote the cubic function
(@, b, ¢, dYx, y)’, then the Hessian hereof is 12°f.f.; the like form in regard to the
quadric f'=(d, ¥, ¢Xa, y)is 12°f), which is =a'd—¥"; and substituting herein
ax+by, ba+tcy, cx+dy for o, ¥, ¢ respectively, we have the Hessian 12°f,f, of the
cubic. A covariant of f derivable in this manner from a covariant of the next inferior
quantic f is said to be a special covariant.
3566. Reverting to the form

1213%28" ... fifa- o - [ous
if, as before, n—4, n—j, &c. are each of them >0; if there is at least one index ¢ which
is = or <}n (that is, for which n—¢>4n), and if the order mn—é—j... be >n, then
the form, or any sum of such forms, is said to be a form or covariant W. Every covariant
W is thus a special covariant, but not conversely. In the particular case m=2, the

form is .
12°£ 1

which will be a form W if n—a>3n, or, what is the same thing, 2n— 2« >n, that is if
the order be >n. Hence, as already mentioned, the covariants T of the degree 2 are
W, or else x, according as the order is greater than =, or as it is equal to or less than ».

357. Theorem B.—If any covariant T be expressible as the sum of a form W and of
earlier T’s than itself, then forming the derivative (Tf')*, either this is not a form T, or
being a form T, it is expreésible as the sum of a form W and of earlier T’s than itself;
or, what is the same thing, (Tf)*, if it be a form T, is (like the original T) the sum of a
form W and of earlier T’s than itself.

Hence also every form T is the sum of a form W, and of forms derived from the
functions %, % - - ., 52y :
T=W+4P,,
or, what is the same thing, every covariant whatever is of the form W+P,.
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358. The proof that for a form f of the order # the number of covariants is finite,
depends on the assumption that the number is finite for a form f’ of the next inferior
order n—1: this being so, the number of the special covariants of f will be finite ; say
these are A,, A,, A;... (fis itself one of the series, but we may separate it, and speak
of the form f and its special covariants): the forms W are functions of the special cova-
riants, and hence every covariant whatever of f is of the form F(A)+P,; but it requires
still a long investigation to pass from this to the theorem of the existence of a finite
number of forms V such that every covariant whatever is F(V). I pass this over, and
reproduce only the investigation for the case of the quintic.

3959. Starting from the assumed system of forms,

S o=(IF ) i=(J1)s j=(fifs a=(5i)", p=(0i), r=(pi)’, y=(va),
(fe), (fp)s (f)s (J7),
(S, (90), (J2), (p9)s (s9),
(i), (Py), (@), ((iw), @), (), ((iw), ¥),
say, the 23 forms U, it is to be shown that every other covariant whatever of the quintic
is of the form F(U).

The special covariants are f; ¢, (f@), 4, j, which are forms U'; the only form y; is 7, so
that instead of P, writing P;, every covariant whatever of f is

=F(U)+P,;

80 that it remains to show that every form P; is F(U); or, what is the same thing, that
if H be any form F(U) whatever, then that (H¢) and (H) are each of them F(U).

360. In order to show that every covariant of a degree not exceeding m is F(U), it will
be sufficient to show that the several forms (H¢) and (Hi)* of a degree not exceeding m
are each of them F(U); and if for this purpose we assume that it is shown that every
covariant of a degree not exceeding m—1 is F(U), then in regard to the forms (H7) and
(He)* of the degree m, it will be sufficient to show that any such form is a function of
covariants of a degree inferior to m.

361. First for the form (Hz): we have (PQ, ¢)=P(Qi)+Q(P?); and hence we see
that (Hs) will be F(U) if only (U7) is always F(U).

In forming the derivative of ¢ with the several covariants U, we may omit 7 itself, and
also the four invariants (%)% (i7)? ((éw), @), ((éz), y), since in each of these cases the
derivative is =0. 'We have therefore to consider the derivative of ¢ with

fa Py Js % Ps T ¥, (.f ?), (fp)’ (f 7), (J7) (ﬁ)s (¢’7:)a (J.i)s (pi), (=), (i), (iy),

respectively : the first seven of these are each of them U; the remaining eleven are each
of them of the form ((PQ), 7). Now ((PQ), %) is a linear function of P(Q:)%, Q(P%)?, and
i(PQ)?, that is (PQ), 7) is a function of covariants of a lower degree than itself.

362. Next for the form (Hi), we have (PQ, ¢)’, a linear function of P(Q:)?, Q(P:)e,
i(PQ)*; and we hence see that (Hz)* will be F(U) if only (Us)? is always F(U).
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In forming the second derivative of ¢ with the several covariants U, we may omit as
before the four invariants, and also omit the four linear covariants a, i, ¢, iy; we have
therefore to consider the second derivatives of ¢ with

fs @544, 2, 7 (f2)s (fP)s (f7)s (G7)s (S3)s (99)s (52), (0)s (+9)
respectively : the first six of these are each of them U; the remaining nine are each of
the form ((PQ), 7). Now ((PQ),4)* is a linear function of ((P%)’, Q), ((Q¢)%, P), P(Qe)’,
and Q(P¢). The first two of these are terms of the same form ; (P%)?, as a covariant of
a lower degree than ((PQ),¢), is F(U), and hence ((P¢)?, Q) will be F(U) if only (U, Q)
is F(U); Q being here any one of the functions f, ¢, 4, j, p, , and U being any one of
the functions

fo @,4.5, 0, 7 @ v, (f8), (f0), (f7)s (57)s (S2): (90) (59) (20) (v0) ) (i).

363. For U equal to any one of the last eleven values, the form is (Q, RS), which is
=R(QS)+S(QR), and is thus a function of covariants of a lower degree; there remains
only the derivatives formed with two of the functions f; @, 4,4, p, 7, or of one of these
with & or y. But these are all U other than the derivatives

() (@) (2p)s (27), (275 (f)s (8e)s (J)s () (fY) (#7) () (7)s (+7)s

and since y=(7), the derivatives containing y will depend upon covariants of a lower
degree ; there remain therefore only (/#), (@), (p), (¢7), (1) (f), (), (Ja), (pe):
each of these can be actually calculated in the form F(U).

Hence finally, assuming that every covariant of a degree inferior to m is F(U), it follows
that every covariant of the degree m is F(U); whence every covariant whatever is F(U),
viz. it is a rational and integral function of the 23 covariants U.

364. It will be observed that, writing A, B, C for P, Q, 7, the proof depends on the
theorems

((AB), C), a linear function of A(BC)?, B(CA)’, C(ABY,
(AB, Cy ’ ' do. do.  do.
(ABHCF .,  »  ((ACP,B), ((BO, A), BAC), C(ABY,

which are theorems relating to any three functions A, B, C whatever.

365. I remark upon the proof that the really fundamental theorem seems to be that
which I have called theorem A. As to the forms W it is difficult to see & priori why
such forms are to be considered, or what the essential property involved in their definition -
is; and in fact in a more recent paper, < Die Simultanen Systeme bindren Formen ”
(Clebsch and Neumann, t. 2 (1869), see p. 256), Professor GORDAN has modified the defi-
nition of the forms W by omitting the condition that the order of the function shall
exceed n; if it were possible further to omit the condition of at least one index being
— or< 4n, and so only retain the conditions n—i, n—, &c., each of them >0, then the
essential property of the forms W would be that any such form was a rational and inte-
gral function of the special covariants formed, as above, by means of the quantic of the
next inferior order. And moreover, as regards the theorem B, there seems something
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indirect and artificial in the employment of such a property; one sees no reason why,
when a system of irreducible covariants is once written down, it should not be possible
to show that the derivatives of F(U) with the original quantic f are each of them F(U),
instead of having to show this in regard to the derivatives of F(U) with the several cova-
riants ;: as regards the quintic, where there is a single covariant y, the quadric function
i, there is obviously a great abbreviation in this employment of ¢ in place of f; but for
the higher orders, assuming that the proof could be conducted by means of the quantic
£ itself, it does not appear that there would be even an abbreviation in the employment
in its stead of the several covariants y. The like remarks apply to the proof in the last-
mentioned paper. I cannot but hope that a more simple proof of Professor GORDAN’S
theorem will be obtained—a theorem the importance of which, in reference to the whole
theory of forms, it is impossible to estimate too highly.



